sábado, 5 de mayo de 2012

Electroimán



Un electroimán es un tipo de imán en el que el campo magnético se produce mediante el flujo de una corriente eléctrica, desapareciendo en cuanto cesa dicha corriente.
En 1819, el físico danés Hans Christian Ørsted descubrió que una corriente eléctrica que circula por un conductor produce un efecto magnético que puede ser detectado con la ayuda de una brújula. Basado en sus observaciones, el electricista británico William Sturgeon inventó el electroimán en 1825. El primer electroimán era un trozo de hierro con forma de herradura envuelto por una bobina enrollada sobre él. Sturgeon demostró su potencia levantando 4 kg con un trozo de hierro de 200 g envuelto en cables por los que hizo circular la corriente de una batería. Sturgeon podía regular su electroimán, lo que supuso el principio del uso de la energía eléctrica en máquinas útiles y controlables, estableciendo los cimientos para las comunicaciones electrónicas a gran escala.

Introducción

La corriente (I) fluyendo por un cable produce un campo magnético (B) en torno a él. El campo se orienta según la regla de la mano derecha.
El tipo más simple de electroimán es un trozo de alambre enrollado. Una bobina con forma de tubo recto (parecido a un tornillo) se llama solenoide, y cuando además se curva de forma que los extremos coincidan se denomina toroide. Pueden producirse campos magnéticos mucho más fuertes si se sitúa un «núcleo» de material paramagnético o ferromagnético (normalmente hierro dulce o ferrita, aunque también se utiliza el llamado acero eléctrico) dentro de la bobina. El núcleo concentra el campo magnético, que puede entonces ser mucho más fuerte que el de la propia bobina.
Los campos magnéticos generados por bobinas se orientan según la regla de la mano derecha. Si los dedos de la mano derecha se cierran en torno a la dirección de la corriente que circula por la bobina, el pulgar indica la dirección del campo dentro de la misma. El lado del imán del que salen las líneas de campo se define como «polo norte».
Además, dentro de la bobina se crean corrientes inducidas cuando ésta está sometida a un flujo variable. Estas corrientes son llamadas corrientes de Foucault y en general son indeseables, puesto que calientan el núcleo y provocan una pérdida de potencia

Electroimán e imán permanente

La principal ventaja de un electroimán sobre un imán permanente es que el campo magnético puede ser rápidamente manipulado en un amplio rango controlando la cantidad de corriente eléctrica. Sin embargo, se necesita una fuente continua de energía eléctrica para mantener el campo.
Cuando una corriente pasa por la bobina, pequeñas regiones magnéticas dentro del material, llamadas dominios magnéticos, se alinean con el campo aplicado, haciendo que la fuerza del campo magnético aumente. Si la corriente se incrementa, todos los dominios terminarán alineándose, condición que se denomina saturación. Cuando el núcleo se satura, un mayor aumento de la corriente sólo provocará un incremento relativamente pequeño del campo magnético. En algunos materiales, algunos dominios pueden realinearse por sí mismos. En este caso, parte del campo magnético original persistirá incluso después de que se retire la corriente, haciendo que el núcleo se comporte como un imán permanente. Este fenómeno, llamado remanencia, se debe a la histéresis del material. Aplicar una corriente alterna decreciente a la bobina, retirar el núcleo y golpearlo o calentarlo por encima de su punto de Curie reorientará los dominios, haciendo que el campo residual se debilite o desaparezca.
En aplicaciones donde no se necesita un campo magnético variable, los imanes permanentes suelen ser superiores. Además, es posible fabricar imanes permanentes que producen campos magnéticos más fuertes que un electroimán de tamaño similar.

Dispositivos que usan electroimanes

Los electroimanes se usan en muchas situaciones en las que se necesita un campo magnético variable rápida o fácilmente. Muchas de estas aplicaciones implican la deflección de haces de partículas cargadas, como en los casos del tubo de rayos catódicos y el espectrómetro de masa.
Los electroimanes son los componentes esenciales de muchos interruptores, siendo usados en los frenos y embragues electromagnéticos de los automóviles. En algunos tranvías, los frenos electromagnéticos se adhieren directamente a los rieles. Se usan electroimanes muy potentes en grúas para levantar pesados bloques de hierro y acero, y para separar magnéticamente metales enchatarrerías y centros de reciclaje. Los trenes de levitación magnética usan poderosos electroimanes para flotar sin tocar la pista. Algunos trenes usan fuerzas atractivas, mientras otros emplean fuerzas repulsivas.
Los electroimanes se usan en los motores eléctricos rotatorios para producir un campo magnético rotatorio y en los motores lineales para producir un campo magnético itinerante que impulse laarmadura. Aunque la plata es el mejor conductor de la electricidad, el cobre es usado más a menudo debido a su relativo bajo costo, y a veces se emplea aluminio para reducir el peso.

Qué es un electroimán ?



La función de un electroimán, es justamente, lo que señala su nombre. Un electroimán, es un imán, que funciona como tal en la medida que pase corriente por su bobina. Dejan de magnetizar, al momento en que se corta la corriente. Un electroimán, es compuesto en su interior, por un núcleo de hierro. Núcleo al cual, se le ha incorporado un hilo conductor, recubierto de material aislante, tal como la seda o el barniz. Hilo que tiene que ir enrollado en el núcleo, para que el electroimán funcione. Otra manera de hacer funcionar un electroimán, es de la manera contraria. Cesando el paso de la corriente, por su núcleo. Esto sucede, cuando un electroimán, cuenta con un núcleo de acero. Con lo cual, queda funcionando al igual, que un imán corriente.
 El electroimán fue desarrollado por el inglés, William Sturgeon, el 1823. El cual, junto con otros personajes de la época, lograron desarrollar varios adelantos en el campo de la electricidad en el siglo XIX.
Con respecto al electroimán en sí, este puede ser utilizado, para diversas tareas. Una de las más comunes, es en los timbres. Objetos que podemos encontrar en todas las casas de nuestro país. La forma más común de construirlos, en simulando una herradura. Esto se debe, ya que al aproximar los dos polos del electroimán, o sea, el negativo y el positivo, el poder de magnetismo del electroimán, se acrecienta.






Construcción de un electroimán
Objetivo
  • Verificar como ocurren los fenómenos magnéticos.
  • Construir un electroimán sencillo y experimentar la utilidad del mismo.
Introducción
Los imanes poderosos son difíciles de separar una vez se juntan. Hoy en día existen muchos usos para imanes poderosos, pero estos no podrían utilizarse si no pudiéramos separar los objetos que estos atraen.
Materiales
  • Puntas grandes de hierro o tornillos
  • Una bobina de cable
  • Objetos de hierro
  • Fuente de alimentación o pilas
  • Cinta adesiva
Realización práctica
  • 1.- Quita 2 ó 3 centímetros del aislamiento del cable.
  • 2.- Enrrolla el cable alrededor del clavo de hierro o del tornillo y sujeta los dos extremos con cinta adesiva para que no se desenrrollen.
  • 3.- Conecta los dos extremos a la fuente de alimentación o a la pila y acercalo a los trocitos de hierro y observa si el electroiman que acabas de construir los atrae.
  • 5.- Desconecta la corriente y observa lo que ocurre.
Electroimán construido
Precauciones

  • Hay que tener mucho cuidado siempre que se manejen aparatos que se conectan a la corriente electrica.
  • Si tenemos mucho tiempo conectado el electroimán puede calentarse en exceso.
Explicación científica
  • Cuando las cargas eléctricas se mueven crean a su alrededor un campo magnético. Esto es lo que comprobó Oersted en su famoso experimento. Al pasar la corriente eléctrica por un hilo las brujulas se orientaban perpendicularmente al hilo, de forma que las líneas del campo magnético son circunferencias concéntricas con el hilo.
  • Si ahora el hilo por el que pasa la corriente se enrolla en forma de helice para formar un solenoide el campo producido por las distintas espiras se suma para dar un campo que sigue el eje del solenoide. Tenemos asi practicamente un iman con sus polos Norte y Sur en los extremos de la helice.
  • Si dentro de ese solenoide metemos una barra de hierro (u otro material ferromagnético) los dominios mágnéticos del hierro (en última instancia, los átomos de hierro) se orientan todos de acuerdo con ese campo magnético y se refuerzan los
    efectos y no hace falta que la corriente pase por el hierro para que se produzca el campo magnético, basta con que el campo magnético pase por el hierro para que sus dominios se orienten y se convierta en un imán.
  • Al enrollar el alambre sobre el tornillo se produce un electroimán que tiene dos polos, uno negativo y uno positivo. Su fuerza depende de la corriente eléctrica, el número de vueltas y el material del núcleo.
Curiosidades y otras cosas
Los fenómenos magnéticos se conocen desde hace por lo menos 2800 años, a partir de la observación de los antiguos griegos en el año 800 a. C. de que ciertos fragmentos de mineral en estado natural se atraían entre sí y atraían también a pequeños trozos de un metal, el hierro, pero no a otros metales como el oro y la plata. Dicho mineral se encontró en Magnesia, hoy Manisa, en el oeste de Turquía, hoy el material es conocido como magnetita y no es otra cosa más que Fe3O4 ; estos fragmentos eran ejemplos de lo que ahora conocemos como imanes permanentes.Todos los imanes, sin importar su forma tienen dos polos, llamados polo norte o polo N y polo sur o polo S, los polos recibieron sus nombres debido al comportamiento de un imán en la presencia del campo magnético de la Tierra, el polo norte del imán tiende a apuntar al Polo Norte geográfico de la Tierra y su polo sur apuntará al Polo Sur geográfico terrestre, esto se utilizó para construir una brújula simple.
En 1825 el inglés William Sturgeon (1783-1850) enrolló 18 espiras de alambre conductor alrededor de una barra de hierro dulce, que dobló para que tuviera la forma de una herradura. Al conectar los extremos del cable a una batería el hierro se magnetizó y pudo levantar un peso que era 20 veces mayor que el propio. Este fue el primer electroimán, es decir, un imán accionado por electricidad.
Años después, en 1829, el estadounidense Joseph Henry (1797-1878) construyó una versión mejorada del electroimán. Para ello enrolló en una barra de hierro dulce espiras en forma mucho más apretada y en un número mayor; de esta manera logró una mayor intensidad magnética. El electroimán se comporta de forma equivalente a un imán permanente, con la ventaja de que su intensidad se puede controlar, ya sea cambiando la corriente que se le hace circular o variando el número de espiras de la bobina. Además, al cesar la corriente, cuando se desconecta la batería, desaparece el efecto magnético.
Hoy día se le ha dado a este descubrimiento un gran uso práctico, desde los pequeños imanes de figuras, hasta las cintas magnéticas para grabar y los discos de computadora.
La electricidad y el magnetismo están estrechamente relacionados. El movimiento de electrones causa ambos y cada corriente eléctrica tiene su propio campo magnético. Esta fuerza magnética en la electricidad se puede utilizar para hacer que poderosos electroimánes puedan ser prendidos y apagados con el movimiento de un conmutador.
Los electroimanes vienen en todo tipo de tamaños, desde los pequeños que utilizamos en los timbres de puertas hasta los que se utilizan para levantar coches y otros objetos pesados de hierro.


UN PEQUEÑO VIDEO DE DEMOSTRACION





1 comentario:

  1. hola serias tan amable de decirme como se construye un electroiman de corriente alterna y que se conecte a la red publica en mi caso 120V.
    De ante mano muchas gracias.
    Juan Camilo Cardona

    ResponderEliminar